Brightness Factor Matching for Gesture Recognition System Using Scaled Normalization
نویسندگان
چکیده
The rich information found in the human gestures makes it possible to be used for another language which is called the sign language, this kind of intuitive interface can be used with human-made machines/devices as well, we herein going to introduce a new gesture recognition system based on image blocking and the gestures are recognized using our suggested brightness factor matching algorithm, we have applied two different feature extraction techniques, the first one based on features extracted from edge information and the other one based on a new technique for centre of mass normalization based on block scaling instead of coordinates shifting; we have achieved 83.3% recognition accuracy in first technique with significant and satisfactory recognition time of 1.5 seconds per gesture, and 96.6 % recognition accuracy with recognition time less than one second by eliminating the use of edge detector which consumes time, this paper focuses on appearance based gestures.
منابع مشابه
Hand Gesture Recognition Using PCA
Interacting with physical world using expressive body movements is much easier and effective than just speaking. Gesture recognition turns up to be important field in the recent years. Communication through gestures has been used since early ages not only by physically challenged persons but nowadays for many other applications. As most predominantly hand is use to perform gestures, Hand Gestur...
متن کاملEvaluation of the Parameters Involved in the Iris Recognition System
Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...
متن کاملMotion Feature Extraction Using Second-order Neural Network and Self-organizing Map for Gesture Recognition
We propose a neural preprocess approach for video-based gesture recognition system. Second-order neural network (SONN) and self-organizing map (SOM) are employed for extracting moving hand regions and for normalizing motion features respectively. The SONN is more robust to noise than frame difference technique. Obtained velocity feature vectors are translated into normalized feature space by th...
متن کاملGesture Segmentation Using an Adaptive Threshold Algorithm
Hand gesture segmentation is a key step for gesture recognition. Based on the construction of a new color space of skin model, a new dynamic-thresholding segmentation approach named Adaptive Threshold Segmentation Algorithm (ATSA) was further developed and segmentation effect evaluation was conducted. Some images of hand gesture were processed by using ATSA and the Fixed Threshold Segmentation ...
متن کاملVehicle Logo Recognition Using Image Matching and Textural Features
In recent years, automatic recognition of vehicle logos has become one of the important issues in modern cities. This is due to the unlimited increase of cars and transportation systems that make it impossible to be fully managed and monitored by human. In this research, an automatic real-time logo recognition system for moving cars is introduced based on histogram manipulation. In the proposed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011